High ionic strength glucose-sensing photonic crystal.
نویسندگان
چکیده
We demonstrate a colorimetric glucose recognition material consisting of a crystalline colloidal array embedded within a polyacrylamide-poly(ethylene glycol) (PEG) hydrogel, or a polyacrylamide-15-crown-5 hydrogel, with pendent phenylboronic acid groups. We utilize a new molecular recognition motif, in which boronic acid and PEG (or crown ether) functional groups are prepositioned in a photonic crystal hydrogel, such that glucose self-assembles these functional groups into a supramolecular complex. The formation of the complex results in an increase in the hydrogel cross-linking, which for physiologically relevant glucose concentration blue shifts the photonic crystal diffraction. The visually evident diffraction color shifts across the visible spectral region over physiologically important glucose concentration ranges. These materials respond to glucose at physiological ionic strengths and pH values and are selective in their mode of response for glucose over galactose, mannose, and fructose. Thus, we have developed a new recognition motif for glucose that shows promise for the fabrication of noninvasive or minimally invasive in vivo glucose sensing for patients with diabetes mellitus.
منابع مشابه
Photonic crystal carbohydrate sensors: low ionic strength sugar sensing.
We developed a carbohydrate sensing material, which consists of a crystalline colloidal array (CCA) incorporated into a polyacrylamide hydrogel (PCCA) with pendent boronic acid groups. The embedded CCA diffracts visible light, and the PCCA diffraction wavelength reports on the hydrogel volume. This boronic acid PCCA responds to species containing vicinal cis diols such as carbohydrates. This PC...
متن کاملPhotonic Crystal-Based Sensing and Imaging of Potassium Ions
We report on a method for selective optical sensing and imaging of potassium ions using a sandwich assembly composed of layers of photonic crystals and an ion-selective membrane. This represents a new scheme for sensing ions in that an ionic strength-sensitive photonic crystal hydrogel layer is combined with a K+-selective membrane. The latter consists of plasticized poly(vinyl chloride) doped ...
متن کاملA photonic crystal based sensing scheme for acetylcholine and acetylcholinesterase inhibitors
We present a new scheme for sensing biomolecules by combining an enzyme hydrogel with a photonic crystal hydrogel layer that responds to ionic strength and pH changes. We demonstrate this unique combination by successfully detecting acetylcholine (ACh) and acetylcholinesterase (AChE) inhibitors. Specifically, the sandwich assembly is composed of layers of photonic crystals and a polyacrylamide ...
متن کاملPhotonic crystal optrode sensor for detection of Pb2+ in high ionic strength environments.
We developed an optrode sensing device that utilizes a polymerized colloidal array (PCCA) photonic crystal material. This array diffracts light in the visible spectral region due to the periodic spacing of colloidal particles. The PCCA changes diffraction wavelength due to binding of Pb2+ to an 18-crown-6 ether molecular recognition agent. This optrode consists of a probe assembly that contains...
متن کاملCation identity dependence of crown ether photonic crystal Pb2+ sensing.
We quantitatively modeled the volume phase transition of a hydrogel containing a crystalline colloidal array with a crown ether ligand which binds Pb2+. The hydrogel volume response and the wavelength diffracted depend on the Pb2+ concentration and on both the ionic strength and the valence of the nonbinding ionic species. We successfully modeled the response of this hydrogel Pb2+ sensor to ion...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical chemistry
دوره 75 10 شماره
صفحات -
تاریخ انتشار 2003